Vectors:

2) The Cross product

The cross product is also called vector product because the product results a vector.

Def.:The cross product $u \times v=(|\mathrm{u}||v| \sin \theta) \mathrm{n}, \mathbf{n}$ unit vector (normal) perpendicular to the plane.

Note: The vector $u \times v$ is orthogonal to both u and v

Parallel vectors

Nonzero vectors u and v are parallel if and only if $u \times v=0$.

Properties of the cross product

If u, v and w are any vectors and r, s are scalars, then

1) $(r u) \times(s v)=(r s)(v \times u)$
2) $u \times(v+w)=u \times v+u \times w$
3) $(v+w) \times u=v \times u+w \times u$
4) $v \times u=-(u \times v)$
5) $0 \times u=0$

Notes:

$$
\begin{aligned}
& i \times j=-(j \times i)=k \\
& j \times k=-(k \times j)=i \\
& k \times i=-(i \times k)=j
\end{aligned}
$$

$$
\left.\begin{array}{c}
i \times i \\
j \times j \\
k \times k
\end{array}\right]=0
$$

Vectors:

Calculating Cross product using determinants

If $u=u_{1} i+u_{2} j+u_{3} \mathrm{k}$ and $v=v_{1} i+v_{2} j+v_{3} \mathrm{k}$, then

$$
u \times v=\left|\begin{array}{ccc}
i & j & k \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right|
$$

Ex.:

Find $u \times v$ and $v \times u$ if $u=2 i+j+\mathrm{k}$ and $v=-4 i+3 j+\mathrm{k}$

Solution

$$
\begin{aligned}
u \times v & =\left|\begin{array}{ccc}
i & j & k \\
2 & 1 & 1 \\
-4 & 3 & 1
\end{array}\right|=\left|\begin{array}{cc}
1 & 1 \\
3 & 1
\end{array}\right| i-\left|\begin{array}{cc}
2 & 1 \\
-4 & 1
\end{array}\right| j+\left|\begin{array}{cc}
2 & 1 \\
-4 & 3
\end{array}\right| k \\
& =-2 \mathrm{i}-6 \mathrm{j}+10 \mathrm{k} \\
v \times u & =-(u \times v)=2 \mathrm{i}+6 \mathrm{j}-10 \mathrm{k}
\end{aligned}
$$

Ex.: Find a vector perpendicular to the plane of $P(1,-1,0), Q(2,1,-1)$ and $R(-1,1,2)$.

Solution

The vector $\overrightarrow{P Q} \times \overrightarrow{P R} \quad$ is perpendicular to the plane because it is perpendicular to both vectors.

$$
\begin{aligned}
\overrightarrow{P Q} & =(2-1) i+(1+1) j+(-1-0) k=i+2 j-k \\
\overrightarrow{P R} & =(-1-1) i+(1+1) j+(2-0) k=-2 i+2 j+2 k \\
\overrightarrow{P Q} \times \overrightarrow{P R} & =\left|\begin{array}{ccc}
i & j & k \\
1 & 2 & -1 \\
-2 & 2 & 2
\end{array}\right|=\left|\begin{array}{cc}
2 & -1 \\
2 & 2
\end{array}\right| i-\left|\begin{array}{cc}
1 & -1 \\
-2 & 2
\end{array}\right| j+\left|\begin{array}{cc}
1 & 2 \\
-2 & 2
\end{array}\right| k \\
& =6 \mathrm{i}+6 \mathrm{k}
\end{aligned}
$$

Ex.: Find a unit vector perpendicular to the plane of $P(1,-1,0), Q(2,1,-1)$ and $R(-1,1,2)$.

Solution

Since $\overrightarrow{P Q} \times \overrightarrow{P R}$ is perpendicular to the plane, its direction \mathbf{n} is a unit vector perpendicular to the plane

Vectors:

$$
n=\frac{\overrightarrow{P Q} \times \overrightarrow{P R}}{|\overrightarrow{P Q} \times \overrightarrow{P R}|}=\frac{6 \mathrm{i}+6 \mathrm{k}}{6 \sqrt{2}}=\frac{1}{\sqrt{2}} i+\frac{1}{\sqrt{2}} k
$$

Calculating the Triple scalar product (volume): also called Box product

$$
(u \times v) \cdot w=\left|\begin{array}{ccc}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right|
$$

Ex.:

Find the volume of the box determined by $u=i+2 j-\mathrm{k}, v=-2 i+3 \mathrm{k}$ and $w=7 j-4 \mathrm{k}$.

Solution

$$
(u \times v) \cdot w=\left|\begin{array}{ccc}
1 & 2 & -1 \\
-2 & 0 & 3 \\
0 & 7 & -4
\end{array}\right|=-23
$$

The volume is $|(u \times v) \cdot w|=23$ units cubed.

Lines and Planes in Space

In the plane, a line is determined by a point and a number giving the slope of the line. In space a line is determined by a point and a vector giving the direction of the line.

Equations for a line

Suppose that L is a line in space passing through a point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ parallel to a vector $v=v_{1} i+v_{2} j+v_{3} \mathrm{k}$. Then L is the set of all points $P(x, y, z)$ for which $\overrightarrow{P_{0} P}$ is parallel to v.

Vectors:

The standard equation of the line through $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ parallel to $v=v_{1} i+v_{2} i+v_{3} \mathrm{k}$ is:

$$
x=x_{0}+t v \quad, \quad y=y_{0}+t v \quad, \quad z=z_{0}+t v \quad, \quad-\infty \prec \mathrm{t} \prec \infty
$$

and $(x, y, z)=\left(x_{0}+t v, y_{0}+t v, z_{0}+t v\right)$

Ex.:

Find the equations for the line through $(-2,0,4)$ parallel to $v=2 i+4 j-2 \mathrm{k}$.

Solution

With $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ equal to $(-2,0,4)$ and $v=v_{1} i+v_{2} j+v_{3} \mathrm{k}$ equal to
$v=2 i+4 j-2 \mathrm{k}$
$x=-2+2 t \quad, \quad y=4 t \quad, \quad z=4-2 t$
Ex.: Find the equations for the line through $P(-3,2,-3)$ and $Q(1,-1,4)$.

Solution

The vector $\overrightarrow{P Q}=4 i-3 j+7 \mathrm{k}$ is parallel to the line and equation with $\left(x_{0}, y_{0}, z_{0}\right)=(-3,2,-3)$ give

$$
x=-3+4 t \quad, \quad y=2-3 t \quad, \quad z=-3+7 t
$$

We could have choose $Q(1,-1,4)$

$$
x=1+4 t \quad, \quad y=-1-3 t \quad, \quad z=4+7 t
$$

An equation for a Plane in space

Suppose that plane M passes through a point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ and is normal to the nonzero vector $n=A i+B j+C \mathrm{k}$. Then M is the set of all points $P(x, y, z)$ for which $\overrightarrow{P_{0} P}$ is orthogonal to \mathbf{n}.

Thus, the plane through $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ normal to r

$$
A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0
$$

or

$$
A x+B y+C z=D \quad, \quad \text { where } \mathrm{D}=A x_{0}+B y_{0}+C z_{0}
$$

Vectors:

Ex.:

Find an equation for the plane through $P_{0}(-3,0,7)$ perpendicular to

$$
n=5 i+2 j-\mathrm{k} .
$$

Solution

$$
\begin{aligned}
& A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0 \\
& 5(x-(-3))+2(y-0)+(-1)(z-7)=0 \\
& 5 x+15+2 y-z+7=0 \\
& 5 x+2 y-z=-22
\end{aligned}
$$

Notice in this example how the components of $n=5 i+2 j-\mathrm{k}$ become the coefficients of x, y and z in equation $5 x+2 y-z=-22$. The vector $n=A i+B j+C \mathrm{k}$ is normal to the plane $A x+B y+C z=D$.

Ex.:

Find an equation for the plane through $A(0,0,1), B(2,0,0)$ and $C(0,3,0)$.

Solution

We find a vector normal to the plane and use it with one of the point to write an equation for the plane.

The cross product:

$$
\begin{aligned}
A B \times A C= & \left|\begin{array}{ccc}
i & j & k \\
2 & 0 & -1 \\
0 & 3 & -1
\end{array}\right|=3 i+2 j+6 k \text { is normal to the plane. } \\
& 3(x-0)+2(y-0)+6(z-1)=0 \\
& 3 x+2 y+6 z=6
\end{aligned}
$$

Lines of intersection

- Two lines are parallel if and only if they have the same direction.
- Two planes are parallel if and only if their normals are parallel.
- The planes that are not parallel intersectin a line.

Ex.:

Find a vector parallel to the line of intersection of the planes $3 x-6 y-2 z=15$

Vectors:

and $2 x+y-2 z=5$.

Solution

The line of intersection of two planes is perpendicular to both planes' normal vectors n_{1} and n_{2} and therefore parallel to $n_{1} \times n_{2}$. i.e. $n_{1} \times n_{2}$ is a vector parallel to the planes' line of intersection.

$$
n_{1} \times n_{2}=\left|\begin{array}{ccc}
i & j & k \\
3 & -6 & -2 \\
2 & 1 & -2
\end{array}\right|=14 i+2 j+15 k
$$

Ex.: Find the point where the line $\mathbf{x}=\frac{8}{3}+2 \mathbf{t}, \quad \mathbf{y}=-2 \mathbf{t}, \mathbf{z}=1+\mathbf{t}$ intersects the plane $3 x+2 y+6 z=6$

Solution

The point $\left(\frac{8}{3}+2 t,-2 t, 1+t\right)$

$$
\begin{aligned}
3\left(\frac{8}{3}+2 t\right)+2(-2 t)+6(1+t)=6 & \\
8+6 t-4 t+6+6 t & =6 \\
8 t & =-8 \\
& t=-1
\end{aligned}
$$

The point of intersection is $\left.(x, y, z)\right|_{t=-1}=\left(\frac{2}{3}, 2,0\right)$

Angles between planes

The angle between two intersecting planes is defined to be the angle determined by their normal vectors.

Ex.:

Find the angle between the planes $3 x-6 y-2 z=15$ and $2 x+y-2 z=5$

Solution

The vectors $\quad n_{1}=3 i-6 j-2 \mathrm{k}$ and $n_{2}=2 i+j-2 \mathrm{k}$

Vectors:
are normals to the planes. The angle between them is

$$
\theta=\cos ^{-1}\left(\frac{n_{1} \cdot n_{2}}{\left|n_{1}\right|\left|n_{2}\right|}\right)
$$

$$
=\cos ^{-1}\left(\frac{4}{21}\right)
$$

Problems:

1) Sketch the coordinate axes and then include the vectors u, v and $u \times v$ as vectors starting at the origin
a. $u=\mathrm{i} \quad, v=\mathrm{j}$
b. $u=\mathrm{i}-\mathrm{k} \quad, v=\mathrm{j}+\mathrm{k}$
c. $u=2 \mathrm{i}-\mathrm{j} \quad, v=\mathrm{i}+2 \mathrm{j}$
d. $u=\mathrm{i}+\mathrm{j} \quad, v=\mathrm{i}-\mathrm{j}$
2) In the triangle that determined by the points P, Q and R, find a unite vector perpendicular to plane $P Q R$.
a. $\quad P(1,1,1), Q(2,1,3)$ and $R(3,-1,1)$
b. $\quad P(-2,2,0), Q(0,1,-1)$ and $R(-1,2,-2)$
3) Let $u=5 i-j+\mathrm{k}, v=j-5 \mathrm{k}$ and $w=-15 i+3 j-3 \mathrm{k}$. Which vectors, if any, are:
a. Perpendicular?
b. Parallel?
4) Find equations for the lines:
a. The line through the point $P(3,-4,-1)$ parallel to the vector $i+j+\mathrm{k}$.
b. The line through $P(1,2,-1)$ and $Q(-1,0,1)$.
c. The line through the origin parallel to the vector $2 j+\mathrm{k}$.
d. The line through the point $(3,-2,1)$ parallel to the line

$$
x=1+2 t \quad, \quad y=2-t \quad, \quad z=3 t
$$

e. The line through $(1,1,1)$ parallel to the z-axis.
f. The line through $(2,4,5)$ perpendicular to the plane $3 x+7 y-5 z=21$

Vectors:
g. The line through $(0,-7,0)$ perpendicular to the plane $x+2 y+2 z=13$
h. The line through $(2,3,0)$ perpendicular to the vectors $u=i+2 j+3 \mathrm{k}$ and $v=3 i+4 j+5 \mathrm{k}$
i. The x -axis.
j. The z -axis.
5) Find equations for the planes:
a. The plane through $P_{0}(0,2,-1)$ normal to $n=3 i-2 j-\mathrm{k}$
b. The plane through $(1,-1,3)$ parallel to the plane $3 x+y+z=7$
c. The plane through $(1,1,-1),(2,0,2)$ and $(0,-2,1)$
d. The plane through $P_{0}(2,4,5)$ perpendicular to the line $x=5+t \quad, \quad y=1+3 t \quad, \quad z=4 t$
e. The plane through $A(1,-2,1)$ perpendicular to the vector from the origin to A .
6) Find the plane determined by the intersecting lines:

$$
\begin{array}{lcllll}
L 1: & x=-1+t \\
L 2: & x=1-4 s & , & y=2+t & y=1+2 s & , \\
z=2-2 s & -\infty \prec \mathrm{s} \prec \infty
\end{array}
$$

7) Find a plane through $P_{0}(2,1,-1)$ perpendicular to the line of intersection of the planes $2 x+y-z=3 \quad, \quad x+2 y+z=2$.
8) Find a plane through the points $P_{1}(1,2,3), P_{2}(3,2,1)$ perpendicular to the plane $\quad 4 x-y+2 z=7$.
9) Find the angles between the planes:
a. $x+y=1 \quad, \quad 2 x+y-2 z=2$
b. $5 x+y-z=10, \quad x-2 y+3 z=-1$
10) Find the point in which the line meets the plane.
a. $x=1-t \quad, \quad y=3 t, z=1+t \quad, \quad 2 x-y+3 z=6$
b. $x=2 \quad, \quad y=3+2 t \quad, \quad z=-2-2 t \quad, \quad 6 x+3 y-4 z=-12$

Mathematics: Lecture 7
مدرس مسـاعد بشرى عبد اللطيف
Vectors:

References:

1- Calculus \& Analytic Geometry (Thomas).
2- Calculus (Haward Anton).
3- Advanced Mathematics for Engineering Studies (أ. رياض احمد عزت)

